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Abstract: A confluence of natural and social factors creates an environment rich and also problematic with non-

deterministic systems characterized by high uncertainty, noise and asymmetry in behaviors and predictability.  Natural  

influences include environmental and climate changes and the growth in space-based mechanical activities including 

new deep-space ventures such as asteroid mining and impact-deterrence.  Socioeconomic developments include the  

pervasiveness of internet communications and devices (“Internet of Things” proliferation of personal and industrial 

appliances) and the growth of cooperative and interactive robotics,  as well as self-driving automobiles and trucks. 

Increasingly our society is engaged with both desires and needs to exercise control over systems that are extremely 

complex and also have low thresholds for failure.  New models for computation are required which can go beyond  the 

constraints of conventional Turing-machine calculators, including massive parallel machines and prospective quantum 

computers that employ discrete qubit logics for superposed representation of binary values in the same framework of 

computation-as-calculation.  Topological computing based upon a fundamentally biological model offers promise for 

delivery of physically and operationally robust computing machines that will serve the requirements for intelligent 

control and cybernetics in the management of increasingly complex and “extreme” systems. 
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1. INTRODUCTION 

Complex systems are characterized by time-varying 

structures of the state space which may be linked to 

changes in the operating environment and in non-linear 

dynamics within components of the system involved.  

The general goal of building a representational model 

that can be employed in controlling such a system is to 

have adaptive capabilities that can respond to 

anomalies, asymmetries, and critical events.  

Intelligence in the most general sense involves look-

ahead modeling, prediction of some course of decision 

and action which will alter that state space in a manner 

that is consist with a set of goals. As systems become 

more complex in dimensionality and as both uncertainty 

and nonlinearity increases, deterministic control models 

and traditional computational methods have more 

limitations and more potential for falling into singularity 

or catastrophe types of critical states. 

 

“The mathematical description of the world depends on 

a delicate interplay between continuous and 

discontinuous (discrete) phenomena.  The latters are 

perceived first.  'Functions, just like living beings are 

characterized by their singularities,' as P. Montel 

proclaimed.” [1; Introduction] 

 

A class of problems that typically involve or lead into 

singularities are not solvable exclusively or even 

typically in a linear fashion, such as by increasing clock 

cycle speeds and numbers of processors.  Nor is the 

solution set realized only by dividing computational 

loads among the virtual-processor model of certain 

quantum computer architectures that are still based upon 

the Turing model of finite series of instructions, 

regardless of the parallelism employed to achieve a final 

and optimal choice among n alternatives. 

 

One desirable solution exists with strong evidence from 

success in different applications for  environments 

where the  regions and thus the parameters of interest 

and requiring attention are not predictable. Such a 

solution type can adapt to dynamic environments where 

state space changes may reorient the relationships of 

different critical parameters to one another and to some 

key constraints (e.g., limit points in power, temperature, 

pressure, stress, etc.).  This poses unforeseeable 

problems for a unitary model where structure and the 

computational processes applied to such a model may 

not be sufficiently flexible.  The costs can be omission 

of anomaly conditions (the classic “1% unlikely 

probabilities”) or a computational overload that makes 

working with the model unwieldy or impractical, 

particularly in real-time, micro/nano-scale, and long-

distance (e.g., light-minutes of physical distance) 

situations.   

 

The new method is to  replace the general “unitary” 

model of interaction with a complex system Φ - 

whereby some model M is consistent over time and 

unchanging in its internal structure and the algorithms 

by which it is measured and employed, with respect to 

the primary system of observation and control of Φ - 

with a different schema of modeling.  What changes is 



the “model of the models.”  The method is based upon 

viewing the system Φ in terms of a collection (“field” or 

“space”) of local cellular regions and employing a 

generalized stochastic, randomized procedure of 

evaluating and measuring such local regions and their 

parameters, with respect to the control objectives – the 

cybernetic teleology or goal-set – for system Φ [2].   

 

In fact, the goal-sets for  Φ may change, as well.  But as 

a rule these will be fairly constant based upon how  Φ is 

designed – or, in the case of natural systems (e.g., 

organic metabolism, climate, planetary dynamics, stellar  

physics) how we define and delineate our understanding 

of these systems. 

 

In this alternative approach, there will be multiple local 

models M(Φ)[i] that each focus upon a particular limited 

set of parameters or a finite and dimensionally-localized 

region of the state space of the system (Φ) they 

represent.  Together they can be thought as comprising a 

set of models S = {M(Φ)[i] ...} which at any given time, 

or some other demarcating condition (e.g., when certain 

parameters are in particular ranges of value, or in 

particular ratios with respect to one another), will be 

applied for the purpose of representing and controlling 

Φ.  

 

Each local model M(Φ)[i] is effectively a cellular region 

or network within the state space of Φ.  They may be 

abstractly considered as neighborhoods (bounded 

strictly or loosely in 2, 3 or potentially n dimensions), 

very much in keeping with cellular automata theory 

[3,4].  Alternatively, they may be viewed as a type of 

“perceptive window” into one facet of how the system 

Φ is behaving at a given time or interval and in relation 

ship with other components (subsystems).  These local 

models may be used in a manner of aggregation 

(clustering) which is not itself static; i.e., the scale of the 

local model parameter space and the methods by which 

such models M(S)[i] are aggregated and considered 

together, may itself vary over time and be influenced by 

the prior history of the system Φ and – importantly – the 

knowledge that is acquired and learned by the control 

system during that history [8]. 

 

In Section 2, the limitations of conventional cybernetic 

methods for emerging “extreme” types of complexity 

are discussed, along with reasons why many current 

computational machines (including very “fast” 

calculators) cannot in principle suffice for the types of 

tasks such systems and their models require.  This is 

essentially what may be termed the “Turing Barrier” and 

in Section 3 it is shown how this limitation applies also 

to qubit-based architectures, so-called quantum 

computers.  In Section 4, an example is presented for 

such local region division and clustering, based upon 

analysis of aerodynamic turbulence and and how 

physical systems such as airplane wings can be treated 

as sets of local regions that are clustered together in 

different set combinations in order to determine the 

optimal changes to a mechanically controllable surface.  

The goal of such a system as an aircraft is to maintain 

stable and consistent flight and to complete its missions, 

also with optimization of safety, physical integrity, and 

fuel consumption.  The process of analyzing all relevant 

parameters in order to make changes to specific 

components (e.g., wing flaps and ailerons) during the 

onset and duration of extreme and sudden turbulence is 

an example of an NP-hard problem for which the Turing 

model of computation, and the classic deterministic 

method of modeling, does not provide sufficient power.  

It is not a question of simply adding supercomputer or 

quantum Turing-computer (QTC) resources.  Rather, the 

wing in this case must be viewed more like how the 

wings of biological flying machines – birds – adapt to 

turbulence.  Feathers evolved with a functional purpose.  

(This will be discussed further in Section 4.) 

 

Moving to Section 5, the argument proceeds to the 

what-and-how of a radically different model of 

computation that is contoured, physically and logically, 

to fit the requirements of rapid, virtually instantaneous 

sensing and reaction to critical changes in even vastly 

displaced and dispersed systems, for adaptive and 

heterogeneous introduction including “discovery” 

processes, that can better model, adjust, optimize, and 

control such systems.  The foundation of such in what 

are arguably the best examples of “natural computing” 

machines that can be used as examples and starting 

points, and these are none other than biological 

organisms – “living things” themselves [9,10]. 

 

2. GENERAL LIMITATIONS OF 

DETERMINISTIC CONTROL FOR 

EXTREME SYSTEMS 

Extreme systems can be of many sorts and types.  In 

Figure 1 below, a map of the world of today and 

tomorrow is presented in terms of complex systems that 

have extremes in several aspects, internally and with 

respect to how these systems are employed in society 

and in what are the consequences of failure. 

 

Fig. 1 Twelve Domains of eXtreme Complex Systems 

with high uncertainty and non-linearity 



The special attributes of interest, within all of these 

domains, both physical-centric and information-centric, 

are their disposition to high and unpredictable levels of 

uncertainty, noise, and non-linearity.  One may also add 

that all have multiple criticality points, singularity 

regions (catastrophe zones), for which there can be 

rapid changes in one or usually several key system 

parameters that can thrust the system into such a 

singularity (catastrophe) condition. 

 

2.1 Consequences and Limits of Classical Models 

Mathematically interesting in any case, singularity or 

not, these are systems on which lives depend, from 

individuals to entire species and planetary populations.  

Consequences can also be extreme.  Thus, humanity as a 

species is continually and necessarily pre-occupied with 

managing such systems which are now part of the 

essential infrastructure. In some cases humanity has 

become habituated to behaviors that make the extreme 

values into life-critical ones – such being the case with 

those domains of activity considered as economic, 

military, energy and healthcare. “Failure is not an 

option” has become a very real rule. 

 

Automation, calculation speed (clock-cycles, multi-

threading and other forms of parallel processing) and 

the continued growth of learning capabilities (“AI”) 

within control systems, are all among the ways by 

which many of the XCS in today's world are increasing 

in their capabilities, diversities and obvious control-

ability. The versatility and efficiency of different 

mechanical robots has led to a proliferation of diversity 

and the emergence of cooperative networks involving 

robots as well as human-robot teams, thereby 

compelling arguments to introducing more robots and 

more AI (artificial intelligence) – and more complexity 

and nonlinearity in the process, into these critical 

infrastructure  systems.   

 

However, there is the matter of the “Black Swan” 

conditions and consequences, the “1% or less” outliers 

and unlikely anomalies [11].  There are also 

vulnerabilities that derive from unavoidable exposure of 

such inherently high- dimensionality systems and their 

critical parameter sets into the social sphere.  Any 

system with inputs and outputs into others is not a 

closed system physically and thus informationally.  Any 

system can be tapped and tampered with.  Risks of 

system instability and criticality are further exacerbated 

by conditions that can be introduced from external 

agents and unpredictable configurations into which even 

a well-designed and well-tested system (e.g., aircraft, 

rail, satellite, wireless network) may be placed.  

External-origin disorders and failures increase in 

relation to not only complexity within a control system 

model and its physical and computational 

implementation, but also in response to other paths to 

vulnerability.  This concerns not only cyberthreats in the 

vernacular sense, but the impacts of natural and 

accidental disorder that can enter into a delicately 

balanced and essentially hard-to-model system which 

can come from a power outtage or surge, an EMP event, 

or simply a component breakdown. 

 

A further issue concerns emergent and unplanned 

conflict and “un-cooperativity” within complex multi-

agent networks; this may range from classical resource-

thrashing to direct conflict due to unforeseen 

convergence of competing goals and insufficient 

solutions being built into the control logic (e.g., 

overriding rules and heuristics) for resolving such 

conflicts.  This is not only a matter of higher-level 

cognitive-type reasoning functions in machines (as with 

people) but very basic sharing and distribution of 

resources such as energy (fuel, accessory equipment and 

supplies, etc.).  This can also be described in terms of 

load-balancing problems, but the problem becomes 

more complicated as autonomy and independence of the 

agent subsystems increases.  

 

Outcomes for end-users (passengers, patients, bankers, 

communication networks, civil engineers) may be quite 

more severe in cases of critical mechanical failure, 

incidents of cyberhacking, or system critical points and 

singularities that were not projected during the design 

process.  Supercomputing, high-bandwidth and AI can 

offer a “double-edged sword” in many respects – 

improved or optimal performance and beneficial results, 

when everything is running smoothly, or else true “crash 

and burn” catastrophic results, which from experience 

are generally more severe because of being less 

unexpected.  A fall from a stair or stool can be a more 

severe injury than a fall during a martial arts 

competition; a spill at the dinner table can make more of 

a mess than while working at the kitchen sink. 

 

All these issues become even more delicate and 

potentially severe in impact when operations are 

conducted in remote environments such as orbital, lunar 

or interplanetary space, in deep-sea environments, or in 

mines (where robots are now being employed).  These 

types of XCS operations, with and without mobile 

robots, are increasingly “omnipresent” in our society 

and economy.  However, the majority of critical robotic  

tasks, to date, have been generally limited to singular-

function (even composite) devices (e.g., satellite or 

landing rover) with limited variations in the type of 

interactions that may take place.  As complex as have 

been missions to Moon, Mars, Jupiter, Saturn, 

67P/Churyumov–Gerasimenko and other destinations, 

operations involving two or more robot devices 

interacting with each other and/or with manipulation-

type operations (e.g., involving other objects such as an 

asteroid or a fragment of space debris) have been 

limited.  Moreover, command and control involving 

human operators has been highly constrained in order to 

accommodate signal transmission delays as well as 

periodic and asymmetrical breaks in uplink or downlink. 

However, the standard channels for human control of 

objects that may be physically “incommunicado” (either 



perpetually or at certain intervals due to distance or 

other physical barriers), is inherently limited. 

 

2.2 Complexity control requires more flexible models 
The “demand portfolio” for increasing complexity, 

autonomy, and central criticality (in the sense of human 

dependency upon such systems) alters requirements for 

intelligent, adaptive, and fault-tolerant control systems.  

Deterministic models cannot work satisfactorily when 

parameters cannot be identified, measured and 

estimated with sufficient certainty.  This critical claim is 

directed also at such quasi-deterministic models which 

include Bayesian probabilitistic networks, neural 

networks, and other variants of both statistically-based 

and rule-based “machine learning.”  

 

If the control system for the state-space of some target 

system Φ has only one model M(Φ) or even if there are 

multiple models M(Φ)[i] (local or global, as alternative 

choices under some hierarchical logic or a “previously 

trained” pattern learning system (e.g., neural net, 

generic algorithm, Bayesian net) then the impact of 

disruptive changes affecting the mapping of any fixed-

parameter-set M(Φ)[i] to a changed state space of Φ can 

have unpredictable error consequences.  These may be 

reflected only in computational performance loads and 

time to complete tasks, but those can also have 

catastrophic impact upon Φ overall, particularly in real-

time and remote physical operations. 

  

It is thus argued here that a new type of thinking about 

command and control is necessary, and with it, a new 

type of computing architecture as well, for the types of 

machines and systems that offer such dual-impact 

concerns which may be termed “Extreme Complex 

Systems” or XCS.   However, this new cybernetics and 

new computation is not simply a move into multi-agent 

parallelism, which is still inherently deterministic (in 

most architectures; Figure 2).  We suggest, on the basis 

of formal and experimental results, that stochastic, 

randomized, and non-parametric-dependent modeling 

may be often more effective for stable control of such 

XCS environments. 

Figure 2 --- Hierarchical vs. Multi-Agent Control - but 
still deterministically based [13] 

 

We make a distinction here from other forms and levels 

of complexity in both natural and artificially-engineered 

systems.  By XCS we mean those types of systems 

which are inherently hard to formulate into models and 

algorithms to process such models, by virtue of the 

uncertainties and stochastic, random-like natures of 

their parameters, and through the complex relationships 

and inter-dependencies among those parameters.  

Computationally, these may be NP-hard problems, but 

not necessarily so.  Instability and insufficiency within a 

given control system may be not only due to the 

calculations that must be performed in order to ascertain 

values and even value ranges for such parameters.  

Limitations on physical hardware and long-distance 

communications, for instance in aerospace as well as 

high-speed rail, subsurface sea, and high-density 

highway traffic, curtail the ability to perform 

calculations that even in “polynomial time” may vastly 

exceed the time limits for answers, for decisions on 

course correction. 

 

An XCS environment can be considered as having an 

unknown and uncertain structure, where that structure sk 

changes in time instances t0,t1,t2,... The task of 

understanding how sk changes at specific instances ti and 

in response to certain parameter changes may not be 

computationally achievable, certainly within finite time 

intervals when change (adaptation) is required in order 

to avoid catastrophic critical values.  There are in fact 

three major issues, all of which demand a change to the 

usual structured, deterministic algorithmic thinking: 

 

IF the structure sk changes in different time instances ti, 

and IF the changes within sk are varying (within 

different parameters and combinations thereof, and IF 

the stimuli, the parameter changes that trigger the sk 

structural changes may vary in their attributes and 

effectiveness (e.g., pi and pj are parameters which must 

both change by some factors ki and kj, but only under 

certain “other” conditions which are empirically 

“masked” from observation and not known within a 

control algorithm, 

THEN there is an inherent limitation to using a control 

algorithm that is based upon not having such changes 

occurring but instead positing uniformity and 

consistency and a “completeness” that in unattainable 

within the confines of the algorithm [14]. 

 

The path forward to understanding how changes and 

how to adapt in terms of a control system may be 

realized by  a technique of dividing the state space into 

regions, clusters, or cellular networks. Clustering of the 

state space may be understood as: 

Xsk = {X1 ,X2,..., Xn(sk) } : X = ∪ i=1,2,0...,n(sk)Xi, 

where Xi ⊂ X 

 

The change in the structure of the space states 

(including dimensionality) is possible in the medium 

when clustering changes in response to disturbance  

factors which may act as triggers influencing a change 

in how the local cellular neighborhoods are defined and 

also how these clusters are measured with relation to 

others.  In other words, adaptation to structural changes 

can occur through modifications (a) in the choice of 



some model M(Φ)[i] from a set of such models, or (b) in 

the definition of a given model M(Φ)[i] or in both (a) and 

(b).  Computationally, this can be implemented in 

“multi-agent” paradigms with parallel processing 

architectures, including conventional multi-threading, 

but for which MIMD architectures can be more suitable. 

 

Note that external perturbations in system Φ can occur 

due to internal self-organization, as in many multi-agent 

systems. In the presence of coherence in the behavior of 

certain groups of agents, the overall dimension of the 

state space decreases. But perturbations can lead to 

decoherence and a violation of the consistency of the 

behavior of agents in some group, resulting in an  

increase of the state space dimensionality. 

 

The goal from a cybernetic perspective becomes then 

one of identifying changes within dynamically defined 

regions or clusters, making use of simplified sampling 

and adaptation, avoiding the computationally intensive 

and deterministic methods which can be less resilient to 

unexpected and non-linear behaviors, and impractical 

from the standpoint of practical engineering, especially 

in the case of microscopic-sized or ultra-light devices. 

3. LIMITATIONS OF QUANTUM TURING 

MACHINES 

The contemporary quantum computer that is based upon 

a qubit-array architecture, regardless of its physical 

implementation, is derived from a quest focused upon 

two algorithms, the Shor factoring problem and the 

Grover sorting problem [5,15,16].  Both of these tasks 

are challenges to conventional Turing machines because 

of the numbers of numerical calculations that most 

likely need to be performed before an answer is 

achieved.  There is without any doubt a special-case 

need and place for such numeric-intensive processing, 

comparable to the obvious advantage of floating-point 

(FPU) logic in a conventional CPU over simple 

arithmetic (ALU) logic, or the advance during the past 

three decades into graphics processing (GPU) 

specialization.  

Fig. 3 Basic bit vs. qubit representation 

In the qubit-based Quantum Turing (“QT”) machines, 

there is still an adherence to the Turing paradigm of 

defined, discrete values for the elements assigned to 

represent data (as operand or operator), and thus to be 

preserved during the duration of the computational 

process – regardless of the fact that as a qubit there will 

be a superposition-state of at least two values (“1” and 

“0” or “spin-up” and “spin-down”) for some initial 

value-element. As a result, coherence of the complete 

entanglement space is critical for the duration of the 

computational cycle [17, 18]. There are well-known 

engineering issues pertaining to noise and decoherence 

(the bane of maintaining the quantum entanglement 

states for sufficient periods of time in order to complete 

the computational process). The tentatively explored 

solutions to the decoherence problem have system 

infrastructure consequences (e.g., physical size, mass, 

and power requirements) that at least for the foreseeable 

future may render QT machines as impractical for many 

missions such as space robotics and embedded micro-

scale systems) [8]. 

However there may be more fundamental limitations to 

how the QT machines of the future (on the fair 

assumption of engineering solutions and reliability) will 

be able to address the type of XCS that have been 

considered here in this paper, where the very nature of 

the state space can change and be significantly altered in 

ways that may be both unpredictable in advance and 

unpredictable in timing and occurrence. 

This is the dual-faceted issue of static versus dynamic 

representation and structure in memory and static versus 

dynamic distinction between data and process or what is 

typically referred to as program or instruction-set. In the 

QT architectures to-date, the element topology within 

the qubit array is fixed and an algorithm is mapped into 

it.  A finite set of operations is performed according to 

the initial definition of the algorithm and this includes 

the bounds of each element of data and instruction-set 

which do not (should not) change during the course of 

computation.  For the hypothetical system Φ this 

amounts to having a static set of one or more models set 

of models S = {M(Φ)[i] ...}, each of which is based upon 

a fixed subset of parameters in the state space of  Φ. 

However, if the boundaries and even the 

dimensionalities of these models change, as a result of 

the dynamics within  Φ, these will not and cannot be 

reflected into changes in any given model M(Φ)[i] that is 

being evaluated within the QT machine. 

For the duration of its process life-cycle, the QT must 

remain a “black box” and allowed to reach its final 

state; this is true for not only “quantum annealing” type 

designs but other types of QT machines [19].  The 

implication is that the QT machine designs of today and 

their hopeful implementations as physical computers of 

tomorrow, will serve a function of potentially much 

faster numerical calculations for specific problems, 

similar to factoring and sorting, but their ability to 

address the previously discussed “primal issues” of 

XCS will be not that much different from current 

conventional Turing machine computers [8, 21]. 

 

The principle challenge with XCS remains, and this is 

the issue of undecidability about critical points and 



regions, also known as singularities.  A general or 

comprehensive model of interaction within distributed 

and non-stationary spaces that does not allow for the 

appearance and even dominance of critical points can 

lead to catastrophic results (mathematically and 

physically).  Failure to observe minute variations and 

gradient changes can lead to irreversible situations.  

However, such minute variations may be measured and 

analyzed much faster through attention to local 

neighborhoods and cellular-type regions or fields of 

data.  This path has led to new approaches using sets of 

localized models with simpler and potentially faster 

computational loads and more conveniently mappable to 

parallel architectures. Such models are characterized by 

asymmetric, stochastic methods for sampling, 

estimating, and assessing predictive values for regions 

in a data space where changes may otherwise be 

unobserved within constraints of computational time. 

4. AN EXEMPLARY MODEL (AEROSPACE 

TURBULENCE) 

Stochastic programming is one framework for modeling 

of optimization problems that involve uncertainty in 

both the identity and interrelationship of parameters and 

in their values at given instances and configurations. 

Whereas deterministic optimization problems are 

formulated with known parameters, real world problems 

almost always include some unknown parameters. One 

of the approaches for solving such problems, when the 

parameters are known only within the certain bounds, is 

called the robust optimization. Here, the goal is to find a 

solution, which is feasible for all such data and is 

optimal in some sense. Stochastic programming models 

are similar in style, but take the advantage of the fact 

that probability distributions governing the data are 

known or can be estimated. The goal here is to find 

some policy that is feasible for all (or almost all) the 

possible data instances and minimizes the expectation of 

some decision functions and the random variables. More 

generally, such models are formulated, solved 

analytically or numerically, and analyzed in order to 

provide useful information to a decision-maker.  The 

approximation techniques are then extensible to 

randomized selection and trial (an interpolation process) 

of algorithms for adjusting system parameters (Figure 

4).  In the experimental case described here, this 

randomization is performed with a pressure-actuated 

control model directed at making a topological-based 

response to unpredictable variances in pressure across a 

wing surface, such as in an airplane wing. The goal is to 

identify field-like, wave-like surface (topos) 

disturbances faster than by adherence to deterministic 

methods of data acquisition and analytics. 

 

The Local Voting (LV) control protocol developed by 

Granichin et al [13] is one such model.  It operates with 

a nonvanishing step-size for conditions of significant 

uncertainty and external disturbances [13, 20]. The 

objective is to detect changes that may be insignificant 

in most cases but which can be indicative of developing 

conditions leading to irreversible effects. Stochastic 

gradient-like (stochastic approximation) methods have  

Fig. 4 Random selection of estimation and control [13] 

 

also been used before in other works [12,20] but with a 

decrease to a zero step-size. Usually, the stochastic 

approximation is studied for unconstrained optimization 

problems, but the above-mentioned results stimulated 

the development of new approaches [13c] to track the 

changes in parameter drift using simultaneous 

perturbation stochastic approximation (SPSA) [2]. 

 

An experimental platform has been developed [12, 13] 

(Figures 5-7) which addresses one major problem in 

aerodynamic stabilization during turbulence, focusing 

upon wing surface pressure points as the key observable 

parameter.  The wing surface is covered with actuators 

that serve as mini-wingflaps, each coupled with a 

pressure sensor, such as illustrated in Figure 5. Each 

sensor-actuator unit may be considered as an active 

agent in a computational network.  However, sampling – 

and motor response – can be performed asynchronously 

and asymmetrically – this derives from the use of the 

stochastic approximation methods. This may be 

considered as a prototype for use of the LV protocol to 

other applications including the interactivity among a 

group of cooperating robots. In other cases the 

“turbulence” is not present in a classic aerodynamic or 

hydrodynamic phenomenon but there are comparable 

dynamics in the forces exerted between the target object 

and the robot apparatus operating with it.   

Fig. 5 “Wings with feathers” [12] 

 

Let x
i
k be the integrated pressure deviation for “feather” 

a
i
 – data derived from sensor measurement.  Agent 

dynamics may be described as:  

x
i
k+1 = f ( x

i
k, u

i
k ), i ∈  N = {1,...,n}  

Observations: y
i
k = x

i
k +ξ

i
k 

The Local Voting Protocol is given by:  

u
i
t = α ∑ b

i,j
k ( y

j
k − y

i
k )  where j∈N

i
k  



Consistent behavior (consensus): x
i
k ≈ x

j
k , i,j ∈  N  

In a turbulent flow environment with no responsive 

adjustments to sensor-actuator units, LV readings across 

a wing surface resemble a “kaleidoscope” effect among 

the regions, as shown in Figure 6 below.  All actuator 

units “feathers”) in the wing remain unadjusted and with 

no change in orientation in response to changes in 

applied external pressures.  The consensus “goal” state 

(cf. Fig. 7) provides for uniform or within-threshold 

values from all LV “cellular regions” (clusters) during 

turbulent conditions, achieved through servo-controller 

adjustments of the sensor-actuator “feather” units.   

 

Fig. 6 Wing sensor field under turbulence [12]         

 

Fig. 7 Wing consensus state under turbulence [12] 

 

In this given experimental case, LV clusters are 

statically defined by the geometry of the sensor-actuator 

units (Figures 6 and 7).  Stochastic approximation and 

randomized sampling and perturbation is not limited to 

a static architectural model of the given system, but 

rather, a conventional aircraft wing, and the entire 

vessel, constitutes a static geometry – the wing has a 

defined and permanent geometry.  In other applications 

and tasks the LV regions need not be uniform, nor static, 

in their geometry. For instance, consider cooperative 

agents working with interchangeable components (such 

as tool fittings) in physically dynamic environments 

with unpredictable kinetics (such as an asteroid in the 

process of being mined or split into fragments with the 

intention of reducing impact threats to Earth or some 

other habitation).  It is possible to create different 

“dynamic” maps of LV cellular regions and also larger 

assemblies of clusters, with different geometries that 

correspond to how the system is being affected by its 

environment at any given time period. 

 

Within XCS operations there are critical time intervals 

for such adaptations that can avert an critical 

“singularity” event affecting the entire system.  

Adaptation of wing surfaces (and potentially also other 

components) in an aircraft to sudden turbulence requires 

asynchronous adjustments of multiple actuators.  

Randomized alterations to small regions (clusters) of the 

system space have two unique advantages over models 

that attempt to comprehensively address the entire 

system.  First, results can generally be achieved faster 

and with fewer computational resources.  Secondly, and 

very significantly, errors in the decision process – which 

can be frequent in beginning stages of a cybernetic 

system adaptive learning process – will be more 

localized, more containable, and more easily 

correctable, than errors that affect large sectors of 

system performance.  Drawing from the illustration of 

wing adaptation to turbulence - adjustment of several 

“feather” actuators, in a way that has an adverse or 

otherwise non-beneficial effect on the overall system, 

will (generally) be more easily correctable and offset by 

other adjustments, in contrast to a system-wide 

adjustment that may be irreversible. 

5. TOPOLOGICAL COMPUTING MODEL 

A topological information resonance (TIR) model of 

computation is introduced as a “model of modeling” 

XCS, by treating a topos or whole surface as a unitary 

entity that can undergo a variety of surface changes 

which will be reflected into the choice of the local 

cluster nets, the neighborhoods, that must be examined 

and processed within an LV protocol.  This in turn 

allows for changes (selections) in the parameter sets 

defining one or more models M(Φ)[i] that determine the 

relevant state space parameters which are dominant in 

system Φ dynamics. This computing model is 

heterogeneous – it employs Turing calculations and 

processors, but it also incorporates a design that uses the 

mapping of physical changes in a topology of a surface 

which acts as the model for system Φ.  That mapping 

governs the distribution of tasks among any other 

computing resources of different types [21].  

This TIR model operates analogously to the wing 

surface consensus that is built from randomized 

evaluations of local cellular neighborhoods across a 

finite surface.  As a general “machine” that can be 

employed for multiple “topology mappings” of abstract 

system states, the current thinking is to employ a 

molecular construct that can be conformationally altered 

through nanostructured node-elements added to a 

protein or nucleic acid base framework.  The nodes 

respond electromagnetically to measured changes in the 

external system Φ parameters.   

This direction of thought leads toward a physical device 

(currently the subject of experiment as a molecular array 

of protein-polymer conjugates) that is subject to 

quantum-scale effects for its operation, including 

entanglement states between numerous (and an 



indeterminate and indefinite number at a given instant in 

time) node-elements (e.g., quantum dots along the 

macromolecule chain) [22]. Unlike QT devices, this use 

of entanglement will not be so strictly bound to 

particular memory-value locations, to specific dots or 

nodes, and the natural decoherence of many entangled 

states within the overall topos-network will not be the 

problem of the scale that such noise-related decoherence 

is with QT machines.  Thus, it is expected that the TIR 

machine will enable non-Turing or trans-Turing 

computing functions in a manner not possible with any 

possible Turing machine.  Without limits of static digital 

memory and processing instruction values, this can 

provide an answer to the limitations of conventional and 

QT computers.  The molecular substrate that 

topologically reflects the states of all models within S = 

{M(Φ)[i] ...} that represent a system Φ; each such model 

is real-time constructed from the geometrical 

coordinates of the topos formed by conformational 

changes in the molecular array [21]. 

The TRP is currently projected to be capable of 

operations in ambient environments (e.g., “room 

temperature”within thresholds of -10 C to +40 C) and to 

require no cryogenics or specialized external support or 

shielding equipment. 

6. CONCLUSIONS 

Extreme(ly) complex systems pose critical limits for 

using control models that depend upon fixed mappings 

from the system Φ state space to any finite set of models 

to be employed in controlling Φ. Even contemporary 

quantum computing architectures are limited by an 

inherent dependence upon the underlying Turing 

machine framework of calculations.  A topological 

approach that directly employs and uses indeterminate 

and uncertain states in its mechanism (structure) can 

represent more accurately the dynamics of critical non-

deterministic systems.  Such a topos-machine can 

tmodel parameters and their relations to one another as 

segments of a continuous surface (topos) and thus offer 

a way to detect unexpected changes in criticality sets 

and their relations to one another.  This will enable the 

more accurate and timely choice of model(s) to be used 

in controlling Φ in keeping with how the state space is 

changing.  Moving into experimental implementation of 

such a topological computer is the next phase of work. 
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